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1 Basics

1 Basics

Due to widespread availability of powerful electronic computers numerical simulations
have been established as a third pillar of science alongside theoretical investigation
and experimentation. One important application of such simulations are problems in
the field of fluid dynamics or more generally of transport problems. Approaches for
simulating such systems may be coarsely grouped into macroscopic, mesoscopic and
microscopic models. Where macroscopic and mesoscopic approaches model fluid-like
behaviours on a higher level, either fully abstracting or at least statistically approxi-
mating the underlying physical reality of particles moving in space, microscopic ap-
proaches aim to directly model the dynamics of the very particles of which e.g. a
fluid as described by Navier Stokes or transport as described by an advection diffusion
equation is but an emergent property. As such microscopic models can also capture
phenomena in areas where both other approaches break down i.e. on the level of
individual molecules or atoms. Notably this viewpoint of particle interactions is not
restricted to very small scales but can also be used to model other systems up to whole
galaxies.

The specific microscopic model employed by both this examination project and the
underlying lecture on Numerical Simulations in Molecular Dynamics [1] considers a set
of particles with distinct spatial positions and evaluates short- and long range interac-
tions between them.

1.1 Relevance of Benzene

Bezene C6H6 is an organic molecule consisting of a ring of six carbon atoms where the
carbon atoms are additionally connected to one hydrogen atom each. Configurations
of two Benzene molecules (C6H6)2 are called dimers. Benzene dimers are the simplest
prototype of π-π stacking which is a molecular interaction that is an important aspect
of e.g. nucleobase stacking, protein interactions or drug binding in DNA and RNA [2].
As such investigations of benzene interactions provide a foundation for research into
these essential areas.
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Figure 1: Chemical structure of benzene
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1.2 Potentials for Molecular Dynamics

Molecular dynamics simulation as discussed in the lecture are based on the laws of
classical mechanics, avoiding e.g. the complexity of the actual quantum mechanical
phenomena governing molecular behavior. That is they consider atoms as point masses
influenced by some set of forces under Newton’s second law. A molecular dynamics
simulation thus consists of two essential steps: Computing the forces between particles
and updating their positions by numerically integrating the Hamiltonian system.

For the integration step one can in principle apply any numerical integration method
such as e.g. Euler’s method. However in order to avoid the numerical instability of the
standard explicit Euler method and to ensure energy convervation it is better to use a
symplectic method such as Velocity-Störmer-Verlet.

Definition 1.1 (Velocity-Störmer-Verlet). Let xni , vni , Fni ∈ Rd be the spatial position,
velocity and total force on a particle i with mass mi ∈ R+

0 at time n ∈ Z. The successive
computation of expressions

xn+1
i = xni + τvni +

τ2

2mi
Fni

vn+1
i = vni +

τ

2mi

(
Fni + Fn+1

i

)
for position and velocity is called Velocity-Störmer-Verlet integration with step size τ ∈ R+.

Individual forces Fij between particles adding up to the total per-particle force using

Fi =

N∑
j=1,j6=i

Fij

are commonly formulated using potentials from which the forces are derived as the
negative gradient. There exists a large variety of different potentials to model different
physics — a common case are pairwise potentials depending only on the distance
between two particles.

Definition 1.2 (Lennard-Jones potential). Let xi, xj ∈ Rd be the spatial locations of two
particles and rij := ‖xj − xi‖ the distance between them.

U(rij) := 4ε
((

σ

rij

)n
−

(
σ

rij

)m)
is called the Lennard-Jones potential for parameters m < n, ε,σ ∈ R+.

Instances of the Lennard-Jones potential are amongst the most-used models for in-
teractions in MD simulations. A common parameter choice is n = 12 and m = 6
resulting in the 12-6 potential where the remaining parameters ε and σ can be fit-
ted to model a variety of physical phenomena. In general σ describes the distance at
which attraction and repulsion forces are balanced and ε describes the strength of the
interaction.
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Definition 1.3 (Coulomb potential). Let xi, xj ∈ Rd be the spatial locations of two
particles and rij := ‖xj − xi‖ the distance between them.

C(rij) :=
1

4πε0

qiqj

rij

is the Coulomb or electrostatic potential which models the interaction between two point
charges qi,qj ∈ R for vacuum permittivity ε0.

The force on xi due to the Coulomb potential between xi and xj with attached point
charges qi respectively qj can be derived as

Fcoulomb,ij = −∇xiC(rij)

= −
1

4πε0

qiqj

r3
ij

(xj − xi).

These Lennard-Jones and Coulomb potentials can be used to model both Van der
Waals and electrostatic interactions between atoms. Databases such as MolMod [3]
collect the necessary parameters for a wide variety of atoms and ions. Connection of
such particles into fixed molecular structures where e.g. the distance or angle between
atoms behaves like a harmonic oscillator can be modeled using fixed bond potentials.

Definition 1.4 (Bond potential). Let xi, xj ∈ Rd be the spatial locations of two particles
and rij := ‖xj − xi‖ the distance between them.

Ub(rij :=
1
2
kb(r− r0)

2

is the bond potential between xi and xj harmonically oscillating at distance r0 ∈ R+ with
spring constant kb ∈ R+.

Definition 1.5 (Angle potential). Let xi, xj, xk ∈ Rd be the cartesian spatial locations of
three particles spanning an angle

Θijk = arccos
(
〈xj − xi, xj − xk〉
‖xj − xi‖‖xj − xk‖

)
between them. One possible potential for describing oscillation around an equilibrium
angle Θ0 with strength k0 ∈ R+ is

Ua(Θ) := −k0(cos(Θ−Θ0) − 1).

Definition 1.6 (Torsion potential). Let xi, xj, xk, xl ∈ R3 with rab = xb − xa be the
cartesian spatial locations of four particles spanning between them two planes intersecting
at the dihedral angle

φijkl = π+ sign(〈rij, rjk × rkl〉) arccos
(
〈rij × rjk, rjk × rkl〉
‖rij × rjk‖‖rjk × rkl‖

)
using the polymer convention.

Ut(φ) :=
∑
i

ki cosiφ

is one possibilty for a torsion potential based on this dihedral angle.
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1.3 GPU Programming

The highly parallel and bandwidth-optimized nature of graphics processing units (GPUs)
renders them a convenient target platform for many scientific applications. The main
questions for determining whether a given computation can benefit from utilizing a
GPU are the degree of parallelism and data interdependencies as well as the amount
of instruction stream branching.

GPGPU Device

Compute unit

Local memory

PE PE PE PE ...

Compute unit

Local memory

PE PE PE PE ...

Compute unit

Local memory

PE PE PE PE ... ...

Global memory

Figure 2: Basic hardware structure of a generic GPU

Also of importance is the required floating point precision — while modern GPUs
support both single and double precision computations, performance parity w.r.t. to
the available memory bandwidth is commonly only available on high end GPUs specif-
ically intended for HPC applications.

General purpose programs for GPUs may be developed in a variety of frameworks
and languages depending on the specific hardware. Common choices are the propri-
etary options CUDA and ROC of Nvidia respectively AMD, GLSL compute shaders or
the heterogenous OpenCL framework which can target GPUs of both manufacturers as
well as CPUs and even FPGAs [4] using a dialect of the C programming language with
convenient extensions for e.g. vector arithmetic. The simulation code developed for
this examination utilizes OpenCL embedded in a Python runtime [5] for quick and ex-
pressive prototyping. This is a common approach for scientific computing, e.g.Python
is a major language in machine learning but the actual computationally demanding
parts are mostly delegated to efficient C/C++ codes.

Considering the specific requirements of MD simulations: The computation of pair-
wise per-particle forces as discussed in the lecture is a embarrasingly parallel problem
if one is willing to compute each pair of forces twice — once for each particle. Then
each computation of the force on a single particle may read the positions of any other
particle in the system but writes only its own force to memory. In an ideal situation a
system of N processing units may compute the forces on N particles in a constant time
unit (ignoring for now the N2 term due to accessing potentially all other particles).
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1 Basics

More problematic is the pointer-based structure that is used for encoding the struc-
ture of individual molecules. Or more specifically not the pointer structure by itself but
rather the way it implicitly encodes the different bond types which requires branching.
It should be noted here that branching is not impossible on GPUs but as each thread
block executes its instruction stream in lockstep any branching causes thread diver-
gence, potentially slowing down performance significantly. For this reason section 2.2
will describe an alternative approach for managing intramolecular interactions.

The lecture introduced the linked cell approach for reducing the O(N2) complexity
of computing the pairwise potentials to O(N). While this method could in principle
also be employed on GPUs, a Verlet list based approach was deemed more convenient
for the code developed during the course of this examination project. This approach
will be detailed in section 2.1.
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2 Molecular Dynamics Simulation Code

2 Molecular Dynamics Simulation Code

Following the GPU considerations of the previous section the MD code [6] developed
by the author utilizes Python as a high-level interface language for declaring param-
eters, managing the data structures and post-processing for visualization (including
e.g. the automatic generation of velocity histograms and temperature plots) while the
actual simulation is performed on the GPU using OpenCL.

if self.step % self.neighborhood_step == 0:
self.update_neighborhoods()

self.evolve_x()
self.compute_intramolecular_forces()
self.compute_intermolecular_forces()
self.evolve_v()

Listing 1: OpenCL kernel calls for a single simulation step in Python

All data is stored as single precision floating point values in order to utilize the full
potential of the available hardware as double precision performance is often compa-
rably limited on desktop-grade GPUs. While the code also supports double precision
this was not used for the simulations as no precision issues were observed w.r.t. dimer
formation.

Ignoring potential-specific data the basic data structure of the code consists of in-
dividual arrays storing the particle positions, velocities and forces. Two force arrays
force_curr and force_prev are maintained to support the Velocity-Störmer-Verlet
integration kernel functions update_x and update_v between which the forces are ac-
cumulated into force_curr. This fully seperates the generic integration part of the
code from any potential-specific considerations.

To clearly separate host-side data structures maintained as configuration by the user
and the actual device-side data structures used for the simulation, the code offers a
Simulation class that is constructed from a MoleculeCollection consisting of the
initial simulation setup together with all required parameters. The Simulation class
also offers basic utility functions for computing and controlling the temperature as
well as collecting various statistics for tracking the simulation process.
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2 Molecular Dynamics Simulation Code

2.1 Verlet List Algorithm

The basic idea of the Verlet list [7] is to perform a full O(N2) traversal of the particle
neighborhood only every n steps, storing the indices of all neighboring particles within
the cutoff distance rcut ∈ R+ extended by some suitable skin distance δskin ∈ R+ to be
reused for the other n − 1 steps. During these n − 1 steps this bookkeeping device
significantly reduces the computational effort as only the particles within rcut + δskin

need to be examined — note that the actual cutoff w.r.t. to the potential calculation
is still rcut, the skin layer is only used to track particles that may move into the cutoff
sphere within n− 1 steps.

As long as the skin distance satisfies δskin > 2nṽτ for step size τ and velocity bound
ṽ this is not expected to increase the error beyond what is already given by the cutoff.
The original publication by Verlet [7] suggests to use to root mean square speed as ṽ
but other choices such as the maximum velocity at update time are also possible. It
is important to take into account velocity changes caused by temperature control to
prevent e.g. underestimation of the skin layer depth during heating phases. Tuning
of the related parameters n and τskin can be used for controlling how large the per-
particle neighbor lists are and thus to some degree the resulting performance. See
figure 3 for a benchmark illustrating this relationship.

The average number of neighbors to be stored per-particle may be estimated using

1
N

N∑
i=1

|neighbors(xi)| ∼
4
3
π(rcut + δskin)

3ρN − 1

for given particle density ρN. Comparing this to the average number of neighbors in a
linked cell method

1
N

N∑
i=1

|neighbors(xi)| ∼ 27r3
cutρN − 1

the Verlet list approach only needs to investigate ∼ 16% of the neighbor candidates
required by linked cell during the n−1 optimized timesteps for sufficiently small δskin.
This directly suggests that combining both methods by e.g. using a linked cell like
approach for the Verlet list construction may be a convenient next step for improving
the performance, see e.g. [8] for work along those lines.

Additionally performance may be improved by using more sophisticated criteria for
determining when the neighbor lists need to be invalidated. However, the algorithm’s
basic version proved sufficiently fast for just-in-time simulation and visualization of the
rather small N ∈ O(103) particle systems explored by this work. The code comfortably
reached around 1 ps simulated time per real world second for a system of 1000 argon
atoms in a periodic 512nm3 box at 300 K with τ = 0.0005 ps and rcut = 0.3395 · 2.5
nm in early benchmarks using a desktop-grade Nvidia GeForce RTX 2070 GPU. Despite
that, reductions of the neighborhood search time complexity will still quickly become
relevant for larger problems as time spent on list updating increasingly dominates the
non-updating time steps.
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Figure 3: Speedup compared to rskin = 0 for different particle counts

Figure 3 shows speedup values relative to the performance when resolving the
neighborhood at each step for three differently sized simulations of argon at 300K
and with a average density of pN = 8 atoms per cubic nanometer. The smallest simu-
lation at n = 1000 atoms presents a special case as this number doesn’t saturate the
2304 processing elements of the test GPU which combined with a small memory foot-
print results in both the lowest speedup and highest number of mega particle updates
per second at 3.22 compared to 0.73 for n = 8000 and 1.77 for n = 4096 particles.

Investigation of a heterogenous approach where the list construction is performed
on the CPU for which e.g. sorting approaches are more straight forward to implement
while the bulk updates and force calculations stay on the GPU might also warrant a
closer look. Distribution of processing to multiple GPUs could be realized by merging
the Verlet list for GPU-local processing and linked cell approach for communication.

2.1.1 Periodic Boundaries

Integration of periodic boundaries in a linked cell approach is straight forward as
one only needs to change which cells are considered as neighbors to construct e.g. a
periodic torus geometry. In the case of the Verlet list algorithms periodic boundaries
can be resolved during list construction by considering not just the actual cell locations
as neighbor candidates but also the locations shifted along any periodic offset and
adding the shifted candidate to the neighborhood list if it falls within the considered
distance. This should be done in the inner loop of list construction in order to not
increase the memory bandwidth demands even further.

Listing 2 shows an excerpt of how this implemented. One thing to highlight there
is the usage of masks built from evaluations of comparison expressions instead of
branching constructs. This is a common pattern for vectorizable code on both CPUs
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2 Molecular Dynamics Simulation Code

and GPUs. Due to this pattern the code not only computes forces without any branches
but can do the same also for the list construction — the possible branching due to the
loops can be ignored here as the bounds are the same for all threads.

for (unsigned int jParticle=0; jParticle < $n_atoms; ++jParticle) {
for (int sX=-1; sX <= 1; ++sX) {

for (int sY=-1; sY <= 1; ++sY) {
for (int sZ=-1; sZ <= 1; ++sZ) {

vec_t shift = $domain_size * (vec_t)(sX,sY,sZ);
vec_t jPos = get(pos, jParticle) + shift;

scalar_t r = length(jPos - iPos);

unsigned int iMolecule = molecules[iParticle];
unsigned int jMolecule = molecules[jParticle];

scalar_t iMass = pos[iParticle].w;
scalar_t jMass = pos[jParticle].w;

scalar_t mask = (r < cutoff + skin)
* (iParticle != jParticle)
* (iMolecule != jMolecule);

// [...] Lennard-Jones parametrization

coulomb_i_indices[idx] += mask * jParticle;
coulomb_i_charge[idx] += mask * coulomb_q(iMass) * coulomb_q(jMass);
coulomb_i_shift[idx].xyz += mask * shift;

idx += mask;
}

}
}

}

Listing 2: Excerpt of Verlet list construction for a periodic cube in OpenCL

Prior to reconstruction of the neighborhood list any molecules that are outside the
prime domain are wrapped back. It should also be noted that the mask excludes any
pair potentials between atoms of the same molecules and not just between every four
consecutive atoms. This was done for convenience as no impact on the benzene model
was observed — intramolecular pair potentials may be easily unmasked if needed.

2.1.2 Force Computation

Using the explicit neighbor lists maintained by the Verlet list algorithm enables branch
free computation of any pairwise forces on the GPU. Listing 3 illustrates how this is
implemented for Coulomb forces. Kernel functions such as these are applied using one
thread for each particle which is enabled by the massive parallelism provided by GPUs.

11



2 Molecular Dynamics Simulation Code

__kernel void compute_coulomb(__global data_vec_t* pos,
__global data_vec_t* force,
__global unsigned int* coulomb_count,
__global unsigned int* coulomb_indices,
__global scalar_t* coulomb_charge,
__global data_vec_t* coulomb_shift,
scalar_t cutoff)

{
unsigned int iParticle = get_global_id(0);
unsigned int nNeighbors = coulomb_count[iParticle];

vec_t f = 0;

for (unsigned int iNeighbor = iParticle*$max_coulomb;
iNeighbor < iParticle*$max_coulomb + nNeighbors;

++iNeighbor) {
f += coulomb(pos, iParticle,

coulomb_indices[iNeighbor],
coulomb_charge[iNeighbor],
coulomb_shift[iNeighbor].xyz,
cutoff);

}

force[iParticle].xyz += f;
}

Listing 3: Example for the computation of pairwise forces in OpenCL

One significant difference compared to how such computations are carried out in
the lecture code are the storage of particle and parameter information in a Structure-
of-Arrays layout instead of in a continguous Particle structure in a Array-of-Structures
which is essential for vectorization of which GPUs can be considered a specical case.
Notably the computation of each pair force is also carried out twice instead of only
once to avoid write conflicts that would occur if more than one thread needs to update
the accumulated force of a single particle at the same time.
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2 Molecular Dynamics Simulation Code

2.2 Molecular Structures

The lecture introduced the usage of a 2D array-of-pointers Particle *M[][] to encode
the neighborhood relations within a linear molecule s.t. M[i][j] points to the j-th
atom of the i-th molecule. The actual bonded interaction potentials are then applied
depending on list length and particle positions within the list.

While possible in principle this approach has various downsides when targeting a
GPU: It performs molecule and particle specific branching and needs to be parallelized
on a per-molecule basis possibly providing worse device saturation as there are fewer
molecules than particles. As this approach would also need to be adapted in order to
facilitate the cyclic and branching neighborhood of benzene — e.g. using a adjacency
graph-like approach which is even more unsuited to GPU parallelization — a different
molecule datastructure was chosen for the code in this work.

Similar to how a per-particle list of neighbor indices is already being maintained for
non-bonded potentials, the code also maintains lists for each type of bonded potential.
This also includes separate lists of any bond-specific parameters in a vectorization-
friendly data layout and enables branch free (ignoring the loop bounds that do not
lead to true instruction stream divergence) per-particle parallelization.

Listing 4 illustrates how the angle forces are computed in this approach. One thing
to highlight there is the branch-free nature of the angle function that computes all
three forces of a given angle potential and returns only one of them by masking.
Adding to this that each angle potential configuration is added to the angle potential
list for each involved particle means that each particle force is computed nine times in
total. This might seem very wasteful at first glance but is a deliberate tradeoff to avoid
synchronization and also considering that on modern hardware it is frequently more
efficient to recompute values more often than strictly needed instead of increasing
branch divergence and memory bandwidth.

This optimized data structure is transparently generated by the code given a user-
friendly description of some molecule as a Python data structure. An example for this
is provided by Listing 6 in the upcoming modeling section. Any required maximum
number of bonds, buffer sizes and indices are maintained in the background without
requiring user intervention.

It should be noted that the approach as documented here potentially leads to lots of
unnecessary threads when a simulation consists of a small number of molecules and
a large number of single atoms. If this should become a performance issue it is easily
fixed by maintaining a list of molecule-bound atoms and calling the kernel functions
on this list instead of all particles.

Individual per-potential kernels can optionally be combined into a single kernel that
processes either all or the used subset of potentials in order to balance GPU utilization
and reduce the number of expensive kernel calls. This approach also isolates the im-
plementations of different bonded potentials, allowing straight forward introduction
of new or adapted versions of intramolecular interactions without needing to consider
existing potentials.
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2 Molecular Dynamics Simulation Code

vec_t angle(__global data_vec_t* pos, unsigned int iParticle,
unsigned int i, unsigned int j, unsigned int k,
scalar_t theta0, scalar_t k0) {

vec_t iPos = get(pos, i);
vec_t jPos = get(pos, j);
vec_t kPos = get(pos, k);
// [...]
vec_t fi = factor * (sd2 * sq(length(rkj)) * rij - rkj);
vec_t fk = factor * (sd2 * sq(length(rij)) * rkj - rij);
return (iParticle == i) * fi

+ (iParticle == k) * fk
+ (iParticle == j) * -(fi+fk);

}

__kernel void compute_angles(__global data_vec_t* pos,
__global data_vec_t* force,

__global unsigned int* angle_count,
__global unsigned int* angle_indices,
__global scalar_t* angle_theta0,
__global scalar_t* angle_k)

{
unsigned int iParticle = get_global_id(0);

vec_t f = 0;

unsigned int nAngles = angle_count[iParticle];
for (unsigned int iAngle = iParticle*$max_angles;

iAngle < iParticle*$max_angles + nAngles;
++iAngle) {

f += angle(pos, iParticle,
angle_indices[0*$n_angles+iAngle],
angle_indices[1*$n_angles+iAngle],
angle_indices[2*$n_angles+iAngle],
angle_theta0[iAngle],
angle_k[iAngle]);

}

force[iParticle].xyz += f;
}

Listing 4: Excerpt of OpenCL kernel for computing the angle potentials for all particles
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2 Molecular Dynamics Simulation Code

2.3 Just-in-time Visualization

It can both be quite interesting to watch visual representations of simulations and
also useful for quickly ensuring that the simulation evolves as expected as well as to
gain a first insight into the resulting dynamics. As graphical visualizations are the
original purpose of graphics processing units it is straight forward to visualize data
of simulations that are already being performed on the GPU. In the present case the
memory buffer containing the particle positions can simply be passed to an OpenGL
shader that draws spheres for every location and lines representing the bonds between
atoms.

It should be noted that different from the simulation code, the sphere-drawing part
and some scaffolding for manipulating the view was not developed from scratch but
repurposed from a previous code developed by the author for investigating hard sphere
gas models in kinetic theory [9]. This includes optimized sphere drawing using appro-
priately shaded 2D squares instead of polygon meshes.

In addition to pure visualization of particle positions the code also provides veloc-
ity histograms and temperature plots based on matplotlib [10] that are continuously
updated and displayed alongside the 3D view.

Figure 4: Just-in-time visualization of a MD simulation
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3 Modeling Benzene

Using the toolbox described by the previous sections the benzene molecule can be
modeled to the degree that the characteristic dimer configurations emerge. Bond po-
tentials are used to maintain the given distances between atoms, angle potentials are
used to maintain the 120° angles of the rings and torsion potentials ensure that the
molecule stays planar. Both Lennard-Jones and Coulomb potentials are used together
to model the intermolecular forces, utilizing Lorentz-Berthelot combination rules for
C H Lennard-Jones interactions.

3.1 Dimensionalization

In order to get physically relevant results from a simulation it is essential to use a
consistent set of unit for all computations. This is not just important for being able to
correctly convert any collected results to physical quantities but also to ensure that all
quantities in the system relate correctly to each other.

A convenient base unit choice for the scales at which simulations on the molecular
level are commonly performed are nanometers for lengths, picoseconds for time, the
atomic mass unit for mass and kilojoules per mole for energies. This tuple of length,
time, mass and energy units can then be used to derive any other units and convert
any physical constants that may be required within the context of this simulation. For
example Boltzmann’s constant can be converted to

kB = 8.31446262× 10−3 kJmol−1 K−1

in order to compute the temperature of a system of N particles in Kelvin

T =
2

3NkB

N∑
i=0

mi

2
‖vi‖2

directly from velocities vi in nanometers per picosecond and masses in atomic mass
units.

Table 1 provides an overview of relevant parameters for the benzene simulation
scaled the way in which they are used by the code. One thing to highlight there is
that Coulomb’s constant in the eponymous potential needed to be scaled in order to
correctly relate Lennard-Jones and Coulomb forces in the simulation. Using (4πε0)

−1

with ε0 = 1 yields a simulation where Coulomb forces were negligible compared
to the other interaction forces — specifically this prevented reproduction of any but
the sandwich state of the benzene dimer. Note that this factor is also used by the
MD framework GROMACS [11] (which uses the same base unit selection) to relate
mechanical and electrical quantities.

In order to test the correct relation of the units and the basic functionality of the
software a simulation of an argon gas for temperatures between 0 and 300 K was per-
formed while tracking the distribution of velocity magnitudes and comparing it to the
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3 Modeling Benzene

respective Maxwell-Boltzmann distribution. A video including both the temperature
plot and a velocity histogram is available at https://youtu.be/FK2TxbCkx8M.

Description Value Unit
Time discretization τ 0.0005 ps

C mass m 12.011 u

H mass m 1.008 u

C C bond potential kb 33700 kJmol−1 nm−2

r0 0.14 nm

C H bond potential kb 34000 kJmol−1 nm−2

r0 0.108 nm

C C C angle potential kΘ 63 kJmol−1

Θ0 2.0944 rad

C C H angle potential kΘ 65 kJmol−1

Θ0 2.0944 rad

Torsion potential kφ 50 kJmol−1

φ0 0 rad

C Lennard-Jones potential σ 0.355 nm

ε 0.07 kJmol−1

H Lennard-Jones potential σ 0.242 nm

ε 0.03 kJmol−1

C Coulomb charge q -0.115 e

H Coulomb charge q 0.115 e

Electric conversion factor* f 138.935458 kJmol−1 nme−2

* Coulomb’s constant (4πε0)
−1 is f when scaled to the unit selection

Table 1: Simulation parameters in consistent units

3.2 Dimer

Benzene molecules tend to arrange themselves into certain pairwise low-energy states
that are stable at low temperatures with a disassociation limit at 60K [12]. Measure-
ment and reproduction of detailed information on the structure of these dimer shapes
is a major focus of benzene simulations in literature [2][12][13][14].

Listing 5 illustrates how simulations can be set up in the author’s MD code [6].
The spatial and intramolecular bond configurations of various molecules including
benzene are maintained as tuples in a library model from where they may be easily
instantiated into the simulation domain at any desired position, optionally rotated by
an arbitrary chain of rotation matrices. Listing 6 contains the configuration of benzene.
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3 Modeling Benzene

Various NTV ensemble simulations of two molecules positioned at or reasonably
close to the dimer configurations as given by e.g. [13] were performed and were able
to reliably reproduce various characteristics such as the center-center distances of both
the T-shape and sandwich dimer at 5.19Å resp. 3.77Å. The parallel displaced dimer
as described in literature was only found to be stable at an increased displacement of
about 5Å. It should be noted that the initialization close to or at the dimer configura-
tion was done to simplify analysis of the different shapes. The various configurations
also occur naturally in larger simulations but are less stable and less reproducible there
due to the interactions between many molecules.

As a further check the simulations were also tested without applying the Coulomb
potential which rendered both the parallel displaced and T-shaped dimers unstable
but significantly increased the stability and occurence frequency of a sandwich-like
shape. This supports that the combination of Lennard-Jones / Van der Waals forces
and opposing charges of the involved carbon and hydrogen atoms together explain the
naturally occurring dimer geometries. An overview of these simulations as a video is
available at https://youtu.be/8pNgH4Rt9eo.

from interacticle import MoleculeCollection, LennardJones, Coulomb, Simulation

import interacticle.visualizer

from interacticle.visual import WireBox, MolecularLinks
from library import Benzene

setup = MoleculeCollection()

setup.potential(LennardJones(12.011, 0.355, 0.07))
setup.potential(LennardJones( 1.008, 0.242, 0.03))
setup.potential(Coulomb(12.011, -0.115))
setup.potential(Coulomb( 1.008, 0.115))

# T-shaped dimer
setup.add(Benzene, (1,1,1.519),

rotations=[([0,1,0], 15), ([1,0,0], -9), ([1,0,0], 90), ([0,1,0], 90)])
setup.add(Benzene, (1,1,1.000),

rotations=[([0,1,0], 15), ([1,0,0], -9), ([0,0,1], 30)])

setup.domain_size = 2
setup.tau = 0.0005
setup.cutoff = 0.242*2.5

simulation = Simulation(setup, opengl = True)
interacticle.visualizer.simulate(

setup, simulation,
[ WireBox(setup.domain_size), MolecularLinks(simulation) ],
steps_per_frame = 100)

Listing 5: Simulation setup of a T-shaped benzene dimer
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3 Modeling Benzene

from molecules import Molecule, Atom, Bond, Angle, Torsion

Benzene = Molecule()
Benzene.atoms = [

Atom(-0.0739, 0.1189, -0.000733, 0, 0, 0, 12.011),
Atom( 0.0614, 0.1208, 0.035167, 0, 0, 0, 12.011),
Atom( 0.1353, 0.0019, 0.035867, 0, 0, 0, 12.011),
Atom( 0.0739, -0.1189, 0.000667, 0, 0, 0, 12.011),
Atom(-0.0614, -0.1208, -0.035133, 0, 0, 0, 12.011),
Atom(-0.1353, -0.0019, -0.035833, 0, 0, 0, 12.011),

Atom(-0.1309, 0.2106, -0.001233, 0, 0, 0, 1.008),
Atom( 0.1088, 0.214, 0.062267, 0, 0, 0, 1.008),
Atom( 0.2397, 0.0034, 0.063467, 0, 0, 0, 1.008),
Atom( 0.1309, -0.2106, 0.001267, 0, 0, 0, 1.008),
Atom(-0.1088, -0.214, -0.062233, 0, 0, 0, 1.008),
Atom(-0.2397, -0.0034, -0.063533, 0, 0, 0, 1.008)

]
Benzene.connections = [

Bond(0, 1, 33700, 0.14),
Bond(0, 5, 33700, 0.14),
Bond(1, 2, 33700, 0.14),
Bond(2, 3, 33700, 0.14),
Bond(3, 4, 33700, 0.14),
Bond(4, 5, 33700, 0.14),

Bond(0, 6, 34000, 0.108),
Bond(1, 7, 34000, 0.108),
Bond(2, 8, 34000, 0.108),
Bond(3, 9, 34000, 0.108),
Bond(4,10, 34000, 0.108),
Bond(5,11, 34000, 0.108),

Angle( 0,1,2, 120, 63),
Angle( 1,2,3, 120, 63),
Angle( 2,3,4, 120, 63),
Angle( 3,4,5, 120, 63),
Angle( 4,5,0, 120, 63),
Angle( 5,0,1, 120, 63),

Angle( 6,0,1, 120, 65),
Angle( 7,1,2, 120, 65),
Angle( 8,2,3, 120, 65),
Angle( 9,3,4, 120, 65),
Angle(10,4,5, 120, 65),
Angle(11,5,0, 120, 65),

Torsion( 0,1,2,3, 180, 50),
Torsion( 1,2,3,4, 180, 50),
Torsion( 2,3,4,5, 180, 50),
Torsion( 3,4,5,0, 180, 50),
Torsion( 4,5,0,1, 180, 50),
Torsion( 5,0,1,2, 180, 50),

Torsion( 6,0,1,2, 0, 50),
Torsion( 7,1,2,3, 0, 50),
Torsion( 8,2,3,4, 0, 50),
Torsion( 9,3,4,5, 0, 50),
Torsion(10,4,5,0, 0, 50),
Torsion(11,5,0,1, 0, 50),

]

Listing 6: Description of the benzene molecule and its fixed bonds
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3 Modeling Benzene

(a) T-shape

(b) Sandwich

(c) Displaced

Figure 5: Configurations of the benzene dimer

3.3 Solvents

As a last test of the code’s capabilities, benzene molecules are observed in solutions
with other atoms and molecules, specifically the noble gases argon and neon as well
as water. Lennard Jones parameters for Argon and Neon are taken from the MolMod
database [3]. Water molecules are modeled using the FBA/ε model [15] which is a
version of the common SPC/εmodel adapted to use angle and bond potentials instead
of a static setup for the molecular structure using e.g. virtual sites. As before in the
case of benzene only, instantiating this new molecule into the simulation setup was
very straight forward using the toolbox of potentials.

In the absence of other particles, benzene molecules were observed to form clusters
consisting in part of approximate instances of the preferred configurations. This effect
was less pronounced in simulations of benzene molecules together with many argon
or neon atoms. Interactions with water molecules caused large, likely non-physical,
deformations of the planar benzene geometry fixed by increasing the torsion potential
force coefficient. Independently of this, benzene and water tended to separate in
various simulations at different temperatures. No detailed analysis was performed but
some snapshots of these simulations can be seen in figure 6

A next step for analysing the dynamics of these more complex systems could be
to track the radial distribution of the neighborhood in order to infer e.g. preferred
structures. This is commonly done to test e.g. water models as the radial distribution
of e.g. oxygen-oxygen distances is both characteristic for the system and measurable
in reality.
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(a) Argon (b) Neon

(c) Water (d) Benzene only

Figure 6: Simulations of benzene together with other molecules
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und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit
Abänderungen entnommen wurde, sowie die Satzung des KIT zur Sicherung guter wis-
senschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.
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